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A finite-difference numerical method is applied to solve the full Navier-Stokes equations 
for the fully developed f low and heat transfer in an axially uniformly heated curved pipe 
with arbitrary curvature ratio (the ratio of the pipe radius to the pipe curvature). Previous 
studies were restricted to within a range of the curvature ratio less than 0.3. In this study, 
the ranges of the parameters are the curvature ratio varying from 0.01 to 0.9, the Reynolds 
number varying from 1 to 2,000, and the Prandtl number varying from 0.7 to 300. The 
results of the friction ratio and the Nusselt-number ratio are correlated with the parameters 
of the curvature ratio, the Dean number, and the Prandtl number. 
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Introduction 

Flow in a curved pipe has been extensively studied both 
theoretically and experimentally. Studies conducted up to 1982 
were very well reviewed by Berger, Talbot, and Yao (1983). 
Most of these were restricted to the case with very small 
curvature ratio, c~, in which the flow depends only on a single 
parameter, the Dean number, which indicates the ratio of the 
centrifugal force to the viscous force. Dean (1927) was one of 
the first researchers in this area. He employed a perturbation 
technique to analyze the secondary flow in a curved pipe. Seban 
and McLaughlin (1963) presented experimental data on friction 
and heat transfer for the laminar flow of oil and the turbulent 
flow of water in curved pipes. Mori and Nakayama (1965) 
solved the governing equations by integral methods, subdivid- 
ing the flow pattern into a core and a boundary-layer region. 
Akiyama and Cheng (1971) predicted the fully developed flow 
and heat transfer characteristics by the boundary vorticity 
method. Patankar, Pratap, and Spalding (1974) predicted the 
flow and heat transfer in the developing and developed regions. 
Prusa and Yao (1982) accounted for the combined effects of 
both buoyancy and centrifugal force in heated curved tubes. 
However, in many applications, the value of J is not very small, 
and so the aforementioned solutions for O(J) << 1 may not be 
applicable. Truesdell and Adler (1970) produced a numerical 
solution of fully developed laminar flow in helically coiled tubes 
with c~ from 0.01 to 0.1. Larrain and Bonilla (1970) presented 
a serious solution of pressure drop in the laminar flow of fluid 
in a coiled pipe for K from 1 to 16 and ~ from 0.01 to 0.2. Kalb 
and Seader (1972) showed that the curvature ratio c~, in the 
range of 0.01 to 0.1, has a small effect on the peripheral 
variation of local transport coefficients, but has a negligible 
influence on the average Nusselt number. Austin and Seader 
(1973) numerically solved for the Navier-Stokes equations in 
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the vorticity-stream function form for the flow within a rigor- 
ously treated toroidal geometry without the assumption of 
small & They reported the solutions up to b = 0.2. Lee, Simon, 
and Chow (1985) numerically studied fully developed laminar 
curved pipe flows and extended (5 up to 0.25. Recently, Soh and 
Berger (1987) reported the solutions of the full Navier-Stokes 
equation for arbitrary values of ¢5 and presented solutions up 
to ~ = 0.2. The most exhaustive review for the problem was 
recently given by Kakac, Shah, and Aung (1987). However, the 
flow in a curved pipe with 5 higher than 0.3 has still not been 
reported. Since the curvature of the pipe can significantly 
enhance heat transfer and mass transfer rates, curved pipe flow 
is widely employed in industrial heat exchangers, chemical 
reactors, and many other devices. In some cases, a greater 
may be considered in industrial design. In addition, blood 
flow in the human arterial system involving the highly curved 
aorta has been of particular interest in recent years (Pedley 
1980). Therefore, the aim of this study is to extend the work of 
Austin and Seader (1973) and Soh and Berger (1987) by 
increasing ~ up to 0.9. Of special interest in this study is heat 
transfer for the curved pipe flow of arbitrary curvature ratio. 

Mathematical formulation 

The physical problem considered in this study is a fully devel- 
oped laminar flow in an axially uniformly heated curved pipe. 
Consequently, the pressure and the temperature gradients are 
constants along the direction of the main flow, with buoyancy 
effects omitted. The suitable coordinate system for describing 
the problem is a curvilinear coordinate system (f, ~b', 03, shown 
in Figure 1. The wall temperature is considered constant on a 
cross-sectional surface but variable along the axial (0') direc- 
tion. The governing equations are 

A . V = O  

1 
( V ' V ) V  = - -  V P  + vV2V  

P 

(V" V ) T  = *cV2T (1) 
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,y 
j - /  

Figure I The physical  coordinate system 

where (u', v', w') are velocity components with respect to 
(r', qY, 0') coordinates. The boundary conditions are the nonslip 
and the constant-temperature conditions on the wall. The 
constant pressure gradient G and the constant temperature z 
gradient are defined, respectively, as 

1 CaP' 1 CaT 
G . . . .  z = -- - -  (2) 

R d 0 "  R d0' 

In order to nondimensionalize the above equations, the 

following dimensionless variables are defined: 

a r' O' Ga 2 w' u' 
O = -R ' r = - '  dp = ~b'' O = - '  W° x~ ~ - - ~ ,  w =  -~oo , U = x//~Wo 

v' Woa 2 T , , -  T 
v = ~ o '  Re, = ---v--, De = 6 Re,, H = - - z a  (3) 

where Wo represent the maximum velocity for a fully developed 
flow in a straight pipe with the pressure gradient G, and O, Re,, 
and De are the curvature ratio, the Reynolds number, and the 
Dean number, respectively. The dimensionless governing 
equations for the fully developed flow become 

d ca 
dr I'(1 -- 6r cos tk)ru] + ~ [(1 - -  Or cos ~)v] = 0 (4) 

du v Ou v 2 w z cos ~ l d p  
u - - +  + = 

car r d~b r 1 - 6r cos q~ 0 dr 

1 [ ( ~  d 6sin~b q~)(v car _ ld~) ]  

x / ~  ~ - I  1 - 6r co-----s ; * c a r  r 

cav v t3v uv w z s i n ~  1 dp 
U dr + -r + = r 1 -- 6r cos q~ 6r ~¢'p 

1 I ( ~  6cosq~ ~(v  cav l cau ) ]  
" J l - - -  

(5) 

(6) 

N o t a t i o n  

a Pipe radius 
De Dean number, 6Re 2 
f Dimensionless stream function 
Fc Friction factor of curved pipe 
F, Friction factor of straight pipe 

1 dp, 
G Axial pressure gradient, - -- - -  

R ca0' 
T , - - T  

H 
za 

h Heat transfer coefficient 
Mean heat transfer coefficient 

k Thermal conductivity 
Nu Nusselt number 

p, 
P 

pW2o 
P' Dimensional pressure 
Q Volumetric flow rate 
R Radius of curvature 

Rec Curved pipe Reynolds number, - -  
w~2a 

V 

Woa 
Re, Straight pipe Reynolds number, - -  

v 
T Temperature 
T, Wall temperature 
T O Reference temperature 

U' 
U 

,/SWo 
u' Dimensional velocity in r' direction 

D ! 
f) 

v' Dimensional velocity in ~b' direction 
W' 

W 
Wo 

w' Dimensional velocity in 0' direction 

Wo Centerline velocity of developed flow in a straight 
Ga 2 

pipe with pressure gradient G, - -  
4# 

Greek symbols 

Thermal diffusivity 
a 

O Curvature ratio, - -  
R 

2aw'm(R)l /2 
K 

v 

p Dynamic viscosity 
v Kinematic viscosity 
p Fluid density 

1 CaT 
Axial temperature gradient, R caO' 

Subscripts 

c Quantities associated with the curved pipe 
m Mixed mean value 
s Quantities associated with the straight pipe 
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0W t) OW 
u + 

Or r 04, 

f w  1 4 
1 -- f r c o s O  (v sin ~ - -  u cos ~)  = 

1 [ ;  O ( !Ow wfsinq~ ) + - -  - - +  
V / ~  0-~ Ocp 1 -  dr cos q~ 

+ + dr,/\ dr 1 - fir cos ~b]_] 

0H v OH 1 w 1 1 
t , - - q  

Or r 0¢ x/~ 1 - fir cos ~b a r  x/rDe 1 - f r  cos ~b 

I 02H 1 OH 
+ ( 1 - 6 r c o s O )  Or e +(1 2Mcosq~)-r--0r 

r'lO2Hctp" f sin¢O-ff~4~] + (1 - fr cos 40 ~ 7-7;,, + - 
r 

1 - fir cos ~b x / / ~  

(7) 

(8) 

and the boundary conditions become 

u = v = w = H = O  a t r = l  (9)° 

A stream function can be defined to satisfy Equation 4 as 

1 Of 1 Of U= I)= 
r(1 - f r  cos ~) 05 '  1 - 6r cos $ Or 

(10) 

and the dimensionless vorticity in the 0 direction is defined 
by 

v Ov 1 Ou 
co = - + . . . . .  (11) 

r dr r 0¢ 

Then, by substituting f and co into Equations 4 to 9 and 
eliminating the pressure terms in the u and v momentum 
equations, one ends up with the following equations: 

[(oe:+ lO:+ 
k\Or e r Or rock 2j 

1 ( s i n e ~ O f r c o s c ~ O f ) ]  
r(1 - fr cos ~b) O'-q~ - ~ r  

+ (1 - Or cos 4~)co = 0 

(OfOCO Of&o) co(Oef 5 r s in¢  Of) 
Or O~ Od? ~r + \Or&k 1 ~ fir co-----~ ~b Or 

1 (~_ef f c o s ¢  ~ )  

+ r(1 -- fir cos ~b) \dr O~b 1 - fir cos 

f l  Ozf 6 sin q~ Of 1 Of 
x ~r Oc/~ 2 1 -- 6r cos ~b 0¢ + 1 - fir cos ¢ dr 

Ow Ow) 1 
cos 0- -,sin¢ = 

/'oeco 1 OCO 1 Oeco'~ 
x r(1 - fr cos q~)~,--~-r2 + r O-r- + - 

r O ~ U  

+ f sin ~ ~-~ - r cos dr ] 1 - fr  cos 4 

+ r Orej 

(12) 

(13) 

cos ~ + r sin 
Or Or 1 - fir cos ¢ ~ 

_ 4r 1 I /dew low  1 dew'~ frcos )[  ÷ - - -  +- 
r Or r 0 ¢  e j  

( '2,_-7 ,,4, 
+ f sin q~ d--~ - r  cos ¢ Or 1 - 6r cos ¢_l 

( ~  OH Of O~) rw = r 

Or dr x/~ p r x / ~  [ :oe. l O. l Oe.  
x (1 - 6r cos 4~)[,-~r 2 + r -~r + r d o e /  

( OH sin 4~ O ~ ) ]  (15) 
- 6 cos  4' dr r 

Since the problem is symmetrical, only a half domain 
(~ = 0 ° to 180 °) must be solved. Therefore, the boundary 
conditions become 

1 02f 
r = l f = w = H = O, co = (16) 

1 - - f r c o s O  0r 2 
0w OH 

c~=O,n f = c o  . . . . .  0 (17) 0¢ 0~ 

Since r = 0 is a singular point in the (r, q~, 0) coordinate system, 
the equations at this point are solved in the x-y coordinate 
system shown in Figure 1. The equations at this point are 

oyOf Ow-fwOf=ox Oy ~4  x/Del ~ OX2(OeW 02W OW ) ~ + - -  - 6 - -  - f e w  

0y 2 dX 
(18) 

0f OH w 1 (02H 02H OH) 
0y 0x x/~ - Pr ~ \ ~x2 + --0Y z - f ~ x  (19) 

The parameters presented in the dimensionless governing 
equations are curvature ratio (f), Dean number (De), and 
Prandtl number (Pr). Since the curvature ratio effect is 
emphasized in this study, it is more convenient to use Reynolds 
number for a fixed axial pressure gradient, Res, instead of De 
for the data presentation. 

The equations are solved numerically via a finite-difference 
scheme and the Gauss-Seidel iteration method. The grid size 
of(21, 37) corresponding to (r, ~b) was considered sufficient after 
several tests of different grid sizes. The convergence criterion 
was found to be sufficient when all relative errors of the 
dependent variables were less than 10-*. 

N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  

The results of the flow and the heat transfer are presented in 
terms of the friction ratio and the dimensionless heat transfer 
(Nusselt number) ratio, respectively. Following Soh and Berger 
(1987), the friction ratio is defined as the ratio of the flow rate 
in a curved pipe to that in a straight pipe for the same pressure 
gradient, i.e., 

for: F c Q, n I wr dr dc~ (20) 
F, Q¢ 41'  

Similarly, the Nusselt number ratio is defined as the ratio of 
the mean peripheral Nusselt number in a curved pipe to that 
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in a straight pipe for the same temperature gradient, i.e., 

Nuc 11 
= - -  Nu~  (21) 

Nus 48 

The mean peripheral Nusselt number is defined by 

2ah ~ Nuc(l - ~ cos O)dO 
Nu= = - -  --- (22) 

k S~ (1 - ~ cos ~)d~b 

where the local Nusselt number is defined as 

2ah - 2I(cgH/dr) l,= 1 
Nu= = T = So t j'~ n w r  dr dc~ (23) 

and the heat transfer coefficient is defined as 

k - - ;  = h(Tw - Tin) (24) 

The results are first compared with the existing data to 
ensure that the computational scheme is correct. Table 1 shows 
the comparison of the friction ratio. The parameter x in the 
table is the other form of the Dean number defined in the 
literature (Austin and Seader 1973; Soh and Berger 1987) as 

r = (25) 
v 

It can be seen that the results agree very well (within 1 percent 
of error) with the data of other literature. It is worth noting 
that, for certain small x, the friction ratio is less than 1. This 
phenomenon has been reported by Topakoglu (1967), Larrain 
and Bonilla (1970), and Soh and Berger (1987). 

The data for heat transfer are relatively scarce in the 
literature. Table 2 shows the comparison of the results of this 
work with those of Austin and Seader (1973). The 
agreement is within 2.5 percent in relative error. 

Results for the velocity f ield 

It is well known that due to the centrifugal force induced by 
the pipe curvature, a secondary flow forms in a curved pipe 

Table I The comparison of the friction ratio Fc/F, 

Lorrain & Austin & Soh & 
Bonilla Seader Berger 

x (1970) (1973) (1987) This work 

0.01 0.885 0.9987 0.9999 
0.01 1.00 1.000 1.000 1.0000 
0.01 4.998 1.0003 1.001 1.0002 
0.01 66.15 1.3362 1.3390 
0.1 15 .343  1.0302 1.0305 
0.1 102.33 1.5538 1.5451 
0.2 4.463 1.002 1.0006 
0.2 88.29 1.5200 1.5196 

Table 2 The comparison of the heat transfer ratio ]~c/~'~. 

Austin & Seader This work 
<~ r Pr (1973) 

0.01 100.3 0.7 1.7875 1.7462 
0.1 100.8 0.7 1.7875 1.81 36 
0.1 10.4 0.7 1.0000 1.0250 
0.1 10.4 100 2.0850 2.0513 
0.1 10.4 200 2.4060 2.3810 

flow and the maximum axial velocity departs from the center 
of the pipe toward the outer bend wall. Since the centrifugal 
force is proportional to the square of the axial velocity and 
inversely proportional to the curvature radius of the pipe, 
increased Re, and 6 both result in increasing the centrifugal 
force. Besides, the effect of Re, should be stronger than the 
effect of J. Figure 2 shows that the maximum axial velocity has 
departed further from the center of the pipe when Re, is 
increased. This phenomenon holds for the range of Re, within 
this study, i.e., 1 < Re, < 2000. On the other hand, Figure 3 
illustrates the effect of J on the position of the maximum axial 
velocity. It is shown that the maximum axial velocity also 
departs further from the center of the pipe when ~ is increased. 
However, when c~ is increased to a certain value, further 
increases in 6 causes the maximum axial velocity to return 
closer to the center of the pipe. The reason is that when J is 
high, the increased friction loss reduces the axial velocity, which 
results in decreasing the centrifugal force, and overcoming the 
effect of J on increasing the centrifugal force. This phenomenon 
is shown in Figure 3 when comparing the maximum velocities 
of the cases of c~ = 0.01, 0.1, and 0.4. 

Figure 4 shows the effect of Re, on the secondary flow. It 
can be seen that the center of the secondary flow is closer to 
the pipe wall when Re, is higher. That is, the greater the Re,, 
the larger the centrifugal dominant region and the smaller the 
viscous dominant region. Similar phenomenon can be observed 
in Figure 5 for the results of varying c~ while fixing Res. 

Results for the temperature f ield 

The effects of Re, and ~ on the temperature profile are similar 
to those on the axial velocity profile that were discussed 

-E 

F/gure 2 

(~ =0.01 
Re s =100(De=100) 

2.0 

1.0- 

0.0 I 

-1 0 
r 

Profiles of axial velocity for various Res 

E 

Figure 3 

Re s =500 
2.0 (~ =0.01 (De=2500) 

1.0 ~ "  

0.0 
1 0 

r 
Profiles of axial velocity for various 
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(a) 
De = 20 
fl = 0  

E f 2 = - 0. 0035 t-.- 

f s  = -0. 0060 

f~ = -0. 0085 
fs = - 0. 0110 ~"  

f 6 = - O. 0135 ~: 

f =-o.o16o 

(b) 
De = 50000 
f =0 
I 

f2 = -0. 0050 

f =-0.0120 
3 

f4 = -0. 0190 

fs = -  0. 0260 

f 6 = - 0. 0330 

f =-0.0400 
7 

(c) 
Dc = 200000 
fl =0 

fz -0.0035 

fs = -0. 0080 

f4 =-0. 0125 

fs = - 0. 0170 

f6 = - 0 .  0215 

f7 = -0. 0260 

Figure 4 Secondary  f l o w  patterns for various Res, ~ = 0.2 

F / g u r o  6 

Pr=0.7 

2.0- 8=0.01 
Re s =100(De=100) 

1.0 

0.0 ! 

I o 

r 

Res effect on temperature profile 

previously, and are shown in Figures 6 and 7. Figure 8 shows 
the effect of the Prandtl number (Pr) on the temperature profile. 
The effect of the Prandtl number is similar to that of Re,, except 
that the temperature decreases significantly when Pr increases. 

Results for the friction ratio 

It is shown in Figure 9 that an increase of Re, results in an 
increased friction ratio. For the range of Re, less than 10, the 
friction ratio may become less than 1. That is, the friction loss 
in the curved pipe become less than the friction loss in a straight 
pipe. This phenomenon has been reported by Topakoglu 
(1967), Larrain and Bonilla (1970), and Soh and Berger (1987) 
as mentioned earlier. The effect of 6 on the friction ratio is 
shown in Figure 10. It can be seen that 6 has a prominent effect 

(a) 
Dc = 2500 
fl =0 

f 2  = -0. 0100 

f3 = - 0. 0230 

f = - 0. 0360 
4 

f = - 0. 0490 
s 

f =- 0. 0610 
6 

f~  = - 0 .  0740 

(b) 
Do = 25000 
fl=0 

f2 = -0. 0060 

f 3 = - 0. 0148 

f4 = -0 .  0236 

fs = - 0. 0324 

f6 =-0. 0412 

f~ = - 0. 0500 

(c) 
Dc = 1000000 
f = 0  

I 

f = - 0. 0050 
2 

f = - 0. 0100 
3 

f 4 = - 0. 0150 

fs =- 0. 0200 

f =-0.0250 
6 

f? =-0. 0300 

Figure 5 Secondary flow patterns for various ~, Res = 500 

Pr=0.7 

~"  2.0 Res =500 

I -  (~ =0.01 (De=2500) 
i 

1.o-I 

! 

-1 0 

r 

Figure 7 ~ ef fec t  on temperature profile 

I -  

F.-  
v 

F/gure 8 

(~ =0.01 

2.0. Re s =50(De=25) 

Pr=0.7 

O.0 
- '  0 

r 

Pr e f fec t  on  temperature profile 
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4 
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25 0.4 
" 0.2 I ~  

Iz 
1.5 

1 

0 . 5 ~  
0 500 1000 1500 2000 0 

ROs 0 1000 2000 
Figure 9 Res effect on fr ict ion ratio 

g/f-  lOO 

r ~  110 = = ~ =  

0.5 I , , ' 0'8. 
0.0 0.2 0.4 0.6 1.0 

Figure 10 ~ effect on fr ict ion ratio 

on increasing the friction loss except for the range of Re, < 10. 
Figure 11 shows the friction ratio as the function of De. All 
the data fall on a single curve, even for a large 5. This suggests 
that the friction ratio can be correlated by a single parameter, 
De, for the entire range of the curvature ratio, and the 
correlations obtained in the previous studies (Kakac et al. 1987) 
for 5 < 0.3 can all be extended to at least ~ -- 0.9. 

Results for the heat transfer ratio 

The secondary flow induced by the curvature of the pipe has 
the normal effect of enhancing heat transfer. When Re, is 
increased, the heat transfer rate increases. This is shown in 
Figure 12 for Pr = 0.7 and in Figure 13 for Pr = 5. On the other 
hand, the heat transfer does not necessarily increase with 
increasing 5. As shown in Figure 14 for Pr = 0.7, for a fixed Re,, 
the heat transfer rate increases with increasing ~ until a certain 

P ~ s  

Figure 12 Re. effect on heat transfer ratio, Pr = 0.7 

Pr=5 
6 

5 

o 3 

1 

0 
o lOOO 2000 

Res 
Figure 13 Re, effect on heat transfer ratio, Pr = 5 

3.5 

3.0- 

=~ 2,5- 

~ o  2.0- 

1.5- 

1.0- 

Figure 14 

Pr=0.7 lie s =2000 

1000 

500 

300 

1 0 0 ~  

1 
0.5 i i i i 

0.0 0.2 04. 0.6 0.8 

effect on heat transfer ratio, Pr = 0.7 

1.0 

10 ¸ 

(n  

u,. 1 
U .  

+ a=O.Ol = <5=o.6 
o (~=o.1 o <~=o.8 
. ~=o.2 • ~=o.~ zat "=t 
A ~ =0.4 ~ J  

o x ~ -  o x - ~ -  o X ' ~  I I 'sq" 

.1 I . . . .  --~ . . . .  - I  _- . . . . . . . . . . . . . . . . . . . . . . . .  

1o-2 1o-1 1o° 7oi-;;2 7o4 io5 7o6 
De 

Figure 11 Friction ratio vs. Dean number 

value of 5; at that point, the heat transfer rate no longer varies 
significantly with ~ and may become slightly decreasing with 
increasing 5. However, for a very small Re,, the heat transfer 
ratio is monotonically decreasing with increasing curvature 
ratio. This phenomenon also holds for Pr = 5. Figure 15 
illustrates the results of the curvature ratio effects on the heat 
transfer ratio for Pr = 5. The optimum ~ no longer exists for 
Re, > 50. Therefore, for a given pressure gradient correspond- 
ing to Re, > 50 of the flow of water in a curved pipe, the larger 
the curvature the more the enhancement of the heat transfer. 

The Prandtl number's effect on the heat transfer ratio are 
shown in Figure 16. It can be seen, for the case of~ = 0.01 and 
Re, = 50, that the higher Prandtl-number fluid flow in a curved 
pipe results in a higher heat transfer ratio. Figure 17 shows the 
results of the Prandtl number's effect on the heat transfer ratio 
for a very small Re, (Re, = 1). The results illustrate that the 
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Figure 15 a effect on heat transfer ratio, Pr = 5 
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Results of heat transfer ratio for Res = 1 

curvature actually depresses the heat transfer for a very small 
Re,. The figure also indicates that the depressing effect of heat 
transfer ratio is more prominent for the smaller Prandtl 
number. Figures 18 and 19 show the Nusselt number ratio as 
a function of the Dean number for Pr = 0.7 and 5, respectivdy. 
The incr.eased curvature ratio has a prominent effect on 
decreasing the heat transfer ratio. The reason is that when the 
curvature ratio is high, the flow rate is much lower in a curved 
pipe than that in a straight pipe for the same pressure gradient. 
Therefore, the heat transfer ratio cannot be correlated by the 
parameters of De and Pr only; instead, it must be correlated 
by the parameters of De, Pr, and & 

C o n c l u s i o n s  

This paper reports a numerical study of the fully developed 
flow and heat transfer in a curved pipe with various curvature 

10 

Figure 19 

Pr=5 • (~=0.4 • (~=0.9 
+ 8=0.01 = 8=0.S . . . .  
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De 
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ratio. The range of the parameters are the curvature ratio 
varying from 0.01 to 0.9, the Reynolds number varying from 1 
to 2,000 and the Prandtl number varying from 02 to 300. The 
results indicate, except for the range of low Re, (Re, < 10), that 
the friction ratio increases with increasing pressure gradient 
and increasing curvature ratio. On the other hand, the heat 
transfer ratio increases with increasing ~ until at a certain value 
of 5, the heat transfer rate no longer varies significantly with 
6. In addition, for very low Re, (such as Re, = 1), the increasing 
curvature ratio actually depresses the heat transfer. In this 
study, however, the buoyancy effect is not considered. This may 
restrict the applicability of the present results to cases other 
than those of very low Re, and very high heat transfer rates. 
The inclusion of buoyancy effect is a proposed future study. 

The present results for the friction ratio and the heat transfer 
ratio can be correlated with the parameters of the curvature 
ratio, the Dean number and the Prandtl number. The results 
are given below. 

The fr ict ion rat io  for 5 < 0,9 is 

F= 
- -  = I De ~ 500 
F, 

Fc 0.397 De °'149 De > 500 (26) 
F, 

The heat transfer ratio for 0.01 < 5 < 0.9; 0.7 < Pr < 5 and 
10 -2 < I)¢ < 10 6 is 

mNu= = 0.722 De°'°gs5 -°'°~5 Pr °'~sl  (27) 
Nu s 
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